As every parent knows, children begin life as uninhibited, unabashed explorers of the unknown. From the time we can walk and talk, we want to know what things are and how they work - we begin life as little scientists.

The melded nature of space and time is intimately woven with properties of light speed. The inviolable nature of the speed of light is actually, in Einstein's hands, talking about the inviolable nature of cause and effect.

I like to think that Einstein would look at string theory’s journey and smile, enjoying the theory’s remarkable geometrical features while feeling kinship with fellow travelers on the long and winding road toward unification.

The tantalizing discomfort of perplexity is what inspires otherwise ordinary men and women to extraordinary feats of ingenuity and creativity; nothing quite focuses the mind like dissonant details awaiting harmonious resolution.

I wouldn't say that The Fabric of the Cosmos is a book on cosmology. Cosmology certainly plays a big part, but the major theme is our ever-evolving understanding of space and time, and what it all means for our sense of reality.

I love it when real science finds a home in a fictional setting, where you take some real core idea of science and weave it through a fictional narrative in order to bring it to life, the way stories can. That's my favorite thing.

I wouldn't say that 'The Fabric of the Cosmos' is a book on cosmology. Cosmology certainly plays a big part, but the major theme is our ever-evolving understanding of space and time, and what it all means for our sense of reality.

Quantum Mechanics is different. Its weirdness is evident without comparison. It is harder to train your mind to have quantum mechanical tuition, because quantum mechanics shatters our own personal, individual conception of reality

If string theory is right, the microscopic fabric of our universe is a richly intertwined multidimensional labyrinth within which the strings of the universe endlessly twist and vibrate, rhythmically beating out the laws of the cosmos.

Supersymmetry is a theory which stipulates that for every known particle there should be a partner particle. For instance, the electron should be paired with a supersymmetric 'selectron,' quarks ought to have 'squark' partners, and so on.

In essence, we string theorists have been trying to work out the score of the universe, the harmonies of the universe, the mathematical vibrations that the strings would play. So musical metaphors have been with us in science since the beginning.

All mathematics is is a language that is well tuned, finely honed, to describe patterns; be it patterns in a star, which has five points that are regularly arranged, be it patterns in numbers like 2, 4, 6, 8, 10 that follow very regular progression.

By dimension, we simply mean an independent direction in which, in principle, you can move; in which motion can take place. In an everyday world, we have left-right as one dimension; we have back-forth as a second one; and we have up-down as a third.

One of the strangest features of string theory is that it requires more than the three spatial dimensions that we see directly in the world around us. That sounds like science fiction, but it is an indisputable outcome of the mathematics of string theory.

My dad was a composer and a musician, but he never finished high school. His formal education was rather minimal from the standards of today's college graduates and Ph.D.'s, but he had a deep interest in questions of science and questions of the universe.

Relativity challenges your basic intuitions that you've built up from everyday experience. It says your experience of time is not what you think it is, that time is malleable. Your experience of space is not what you think it is; it can stretch and shrink.

According to inflation, the more than 100 billion galaxies, sparkling throughout space like heavenly diamonds, are nothing but quantum mechanics writ large across the sky. To me, this realization is one of the greatest wonders of the modern scientific age.

There are many of us thinking of one version of parallel universe theory or another. If it's all a lot of nonsense, then it's a lot of wasted effort going into this far-out idea. But if this idea is correct, it is a fantastic upheaval in our understanding.

The universe is incredibly wondrous, incredibly beautiful, and it fills me with a sense that there is some underlying explanation that we have yet to fully understand. If someone wants to place the word 'God' on those collections of words, it's OK with me.

Writing for the stage is different from writing for a book. You want to write in a way that an actor has material to work with, writing in the first person not the third person, and pulling out the dramatic elements in a bigger way for a stage presentation.

Black holes, we all know, are these regions where if an object falls in, it can't get out, but the puzzle that many struggled with over the decades is, what happens to the information that an object contains when it falls into a black hole. Is it simply lost?

So many galaxies, so many planets out there in the universe circling so many stars... it just feels like there's a very good chance that there is another Earth-like planet out there that is able to support some kind of life similar to what we're familiar with.

Many different planets are many different distances from their host star; we find ourselves at this distance because if we were closer or farther away, the temperature would be hotter or colder, eliminating liquid water, an essential ingredient for our survival.

Science is a way of life. Science is a perspective. Science is the process that takes us from confusion to understanding in a manner that's precise, predictive and reliable - a transformation, for those lucky enough to experience it, that is empowering and emotional.

In any finite region of space, matter can only arrange itself in a finite number of configurations, just as a deck of cards can be arranged in only finitely many different orders. If you shuffle the deck infinitely many times, the card orderings must necessarily repeat.

Every moment is as real as every other. Every 'now,' when you say, 'This is the real moment,' is as real as every other 'now' - and therefore all the moments are just out there. Just as every location in space is out there, I think every moment in time is out there, too.

Very much, string theory is simply a work in progress. What we are inching toward every day are predictions that within the realm of current technology we hope to test. It's not like we're working on a theory that is permanently beyond experiment. That would be philosophy.

I think math is a hugely creative field, because there are some very well-defined operations that you have to work within. You are, in a sense, straightjacketed by the rules of the mathematics. But within that constrained environment, it's up to you what you do with the symbols.

The funny thing is, I sometimes get the impression that some people outside of the field think that there's some element of security that we have in working on a theory that hasn't made any predictions that can be proven false. In a sense, we're working on something unfalsifiable.

So: if you buy the notion that reality consists of the things in your freeze-frame mental image right now, and if you agree that your now is no more valid than the now of someone located far away in space who can move freely, then reality encompasses all of the events in spacetime.

Einstein comes along and says, space and time can warp and curve, that's what gravity is. Now string theory comes along and says, yes, gravity, quantum mechanics, electromagnetism - all together in one package, but only if the universe has more dimensions than the ones that we see.

The full name of string theory is really superstring theory. The 'super' stands for this feature called supersymmetry, which, without getting into any details, predicts that for every known particle in the world, there should be a partner particle, the so-called supersymmetric partner.

In my own research when I'm working with equations, I never feel like I really understand what I'm doing if I'm solely relying on the mathematics for my understanding. I need to have a visual picture in my mind. I'm constantly translating from the math to some intuitive mind's-eye picture.

I think it's too fast to say that all sci-fi ultimately winds up having some place in science. On the other hand, imaginative minds working outside of science as storytellers certainly have come upon ideas that, with the passing decades, have either materialized of come close to materializing.

The revelation we've come to is that we can trust our memories of a past with lower, not higher, entropy only if the big bang - the process, event, or happening that brought the universe into existence - started off the universe in an extraordinarily special, highly ordered state of low entropy.

The central idea of string theory is quite straightforward. If you examine any piece of matter ever more finely, at first you'll find molecules, atoms, sub-atomic particles. Probe the smaller particles, you'll find something else, a tiny vibrating filament of energy, a little tiny vibrating string.

String theory is the most developed theory with the capacity to unite general relativity and quantum mechanics in a consistent manner. I do believe the universe is consistent, and therefore I do believe that general relativity and quantum mechanics should be put together in a manner that makes sense.

Most people don’t question the practice of eating meat. Many of these people care about animals and the environment, some deeply. But for some reason-force of habit, cultural norms, resistance to change-there is a fundamental disconnect whereby these feelings don’t translate into changes of behavior.

Time allows change to take place and the very evolution of the universe is what requires some conception of time. Mathematically can we write down a universe that doesn't have time? Sure. Do we think that would be realised in the larger reality that is out there? None of us take that possibility seriously.

Science is very good at answering the 'how' questions. 'How did the universe evolve to the form that we see?' But it is woefully inadequate in addressing the 'why' questions. 'Why is there a universe at all?' These are the meaning questions, which many people think religion is particularly good at dealing with.

When you buy a jacket, you pick the size to ensure it fits. Similarly, we live in a universe in which the amount of dark energy fits our biological make-up. If the amount of dark energy were substantially different from what we've measured, the environmental conditions would be inhospitable to our form of life.

Black holes provide theoreticians with an important theoretical laboratory to test ideas. Conditions within a black hole are so extreme, that by analyzing aspects of black holes we see space and time in an exotic environment, one that has shed important, and sometimes perplexing, new light on their fundamental nature.

Oftentimes, if you're talking to a seasoned interviewer who asks you a question, they may do a follow-up if they didn't quite get it. It's rare that they'll do a third or fourth or fifth or sixth follow-up, because there's an implicit, agreed-upon decorum that they move on. Kids don't necessarily move on if they don't get it.

The beauty of string theory is the metaphor kind of really comes very close to the reality. The strings of string theory are vibrating the particles, vibrating the forces of nature into existence, those vibrations are sort of like musical notes. So string theory, if it's correct, would be playing out the score of the universe.

In the far, far future, essentially all matter will have returned to energy. But because of the enormous expansion of space, this energy will be spread so thinly that it will hardly ever convert back to even the lightest particles of matter. Instead, a faint mist of light will fall for eternity through an ever colder and quieter cosmos.

The main challenge that television presents is that I have a tendency to say things with a great deal of precision and accuracy. Often a description of that sort, which will work in a book because people can read it slowly - they can turn the pages back and so on - doesn't really work on TV because it interrupts the flow of the moving image.

String theory has the potential to show that all of the wondrous happenings in the universe - from the frantic dance of subatomic quarks to the stately waltz of orbiting binary stars; from the primordial fireball of the big bang to the majestic swirl of heavenly galaxies - are reflections of one, grand physical principle, one master equation.

But if you think about a practical implication of enriching your life and giving you a sense of being part of a larger cosmos and possibly being able to use this [gravitational waves] as a tool in the future maybe to listen not just to black holes colliding, but maybe listen to the big bang itself, those kind of applications may happen in the not too distant future.

General relativity is in the old Newtonian framework where you predict what will happen, not the probability of what will happen. And putting together the probabilities of quantum mechanics with the certainty of general relativity, that's been the big challenge and that's why we have been excited about string theory, as it's one of the only approaches that can put it together.

In quantum mechanics there is A causing B. The equations do not stand outside that usual paradigm of physics. The real issue is that the kinds of things you predict in quantum mechanics are different from the kinds of things you predict using general relativity. Quantum mechanics, that big, new, spectacular remarkable idea is that you only predict probabilities, the likelihood of one outcome or another. That's the new idea.

Share This Page